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Abstract-Wave propagation in an inhomogeneous elastic rod or slab is considered. The
governing equations are written in a matrix form and transformations are sought which reduce
the system to a form associated with the wave equation. Integration of the system is then
immediate. It is shown that such reduction may be achieved subject to a function involving the
density and elastic parameters of the material adopting certain multi-parameter forms. These
parameters are available for fitting to the behaviour of a variety of inhomogeneous elas.tic
materials. A specific initial boundary value problem is solved by utilising the present method.

1. INTRODUCTION

One-dimensional wave propagation in an inhomogeneous elastic material has been investi
gated by Payton [1], and Eason [2]. In the latter paper, the elastic parameters were assumed
to depend on one spatial co-ordinate alone; the stress and displacement components were
taken to be dependent on this space co-ordinate and time. It was shown that both for
longitudinal wave propagation in a rod and also for the propagation of shear waves under
conditions of cylindrical or spherical symmetry, the basic equations reduce to the wave
equation with variable wave speed. The latter equation has been discussed by various
authors in connection with other physical situations (see [3-5]). Here, a novel approach is
adopted in which matrix transformations are generated which reduce the equation to the
conventional wave equation. Consequences of this reduction are then developed.

2. THE GOVERNING EQUATIONS

Wave propagation along an inhomogeneous elastic rod or in an inhomogeneous elastic
slab is considered. The relevant stress-strain relation is

au(] =~~,ax (2.1)

where x is the space co-ordinate measured along the rod, (J is the stress and u is the dis
placement; here'; == E in the case of the rod and ~ == A + 2J.1 for wave propagation in a slab
(E is Young's modulus, A. and Ji are the Lame constants). In the absence of body forces, the
equation of motion becomes

(2.2)
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(2.3)

where p is the density of the medium, and t denotes time. It is here assumed that both p and
E are independent of t. Combination of (2.1) and (2.2) yields

a (au) a2uax ~ ax = p at2 '

If the independent variable x is now changed according to the transformation

y =r(p/~)1/2 dx
Xo

(2.3) becomes

(2.4)

(2.6)

(2.5)!- [(p~)1/2 au] = (p~)1/2 a
2
u.ay ay at2

In (2.4), Xo is a convariant reference co-ordinate. Introduction of e and v defined by

au au
e = (p~)1/2 ay' v = at '

now provides a convenient matrix system descriptive of the wave propagation, namely

K=pE.

Oy = HOt,

where subscripts denote partial derivatives and the matrices are defined by

(
0 K1/2)

H = K-1/2 0 '

3. THE MATRIX TRANSFORMATIONS

Matrix transformations of the form

(2.7)

(2.8)

0> =AOy + BO,

O'y. = AOt + BOt

y' =y,

IAI #0,

[AI #0,

t' = t

(3.1)

(3.2)

(3.3)

are now introduced where A, B, A, Bare, in turn, 2 x 2 matrices [a}], [bj], [aj], [b}] i,j = 1,2
with entries functions of y. Transformations of this type are sought which transform

(3.4)

where H is defined by (2.8)2 and H' adopts a form associated with the wave equation,
namely

H' = (~ ~). (3.5)

Transformations of the form (3.1-3.3) were first introduced by Loewner [6] in connection
with the reduction to canonical form of the hodograph equations in subsonic, transonic
and supersonic flow It emerges that reduction may be achieved subject to the real gas
pressure-density relation being approximated by certain multi-parameter forms. Various
important approximations of gasdynamics such as the well-known Karmim-Tsien relation
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may be extracted as particular cases of the theory. In analogous fashion, in this paper, it is
shown that reduction of the system (2.7) to one associated with the wave equation may be
made provided pe can be approximated by certain forms.

It is assumed that e, v, s', v' have continuous mixed second order derivatives with respect
to the independent variables y, t so that the commutativity conditions

(3.6), (3.7)

obtain. Thus, employing these conditions and the relations (3.1-3.3) it is seen that

(A - A)OYI - BOy + (D - Ay)OI - ByO O.

Since Oy = HOt, (3.8) is identically satisfied by setting

A =:4,

- BH + (D - .4) == 0,

By =0.

Returning to (3.1) and (3.2), it follows that, if A is non-singular

O~, - H'O;, ~ A[Oy - A IH'AOt] + (D - H'B)O,

whence, setting

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

D=H'B, (3.13), (3.14)

the system Oy = HOt is transformed to the associated system 0'y' == H'O't' and conversely
via the transformations (3.1-3.3) subject to the conditions (3.9-3.14) prevailing. Thus the
transformation (3.4) is achieved via the relations

0; = AOy + H'BO,

O~ = AOy + BO,

where B is a constant matrix and

Ay - H'B + BA- 1H'A = o.

(3.15)

(3.16)

(3.17)

It is now necessary to specialise the matrix A == A so that the property of zero diagonal
elements is preserved under the mappingH -. H'. From (3.13) it is clear that this property is
invariant if (but not only if) A = A adopts the diagonal form

in which case

while (3.17) yields

A== (a~ 0)
o a~'

H' ==AHA- I = ( 0 a~h~a~)
a~hia~ 0 '

(aDy - h1'bi + hi'bi(aUa~) = O.

(a~)y - hi'b~ + h~'bi(ai/aD = O.

(3.18)

(3.19)

(3.20)

(3.21)



664 D. L. CLEMENTS and C. ROGERS

Combination of equations (3.20) and (3.21) shows that

det A = afa~ = constant = -1., -1. # 0, (3.22)

whence, the system may be reduced to a single Riccati equation in af or a~. In particular,
the Riccati equation in a~ is, on setting h~' = h~' = 1,

P= -bi) (3.23)

Thus,

(a) If P= 0,

af = I/(cty + e),

(b) If ex = 0,

a~ = -py+b,

(c) If Plex > 0,

a~ = (P/ct)1/2 cot{(Plex)1/2(exy +0).

(d) If Plex < 0

a~ = (- Plex)1/2 tanh{( - Plex)1/2(exy + 1l)}

where 0, e, " IJ are arbitrary constants of integration.
Now, since

K = (a~/a~f = -1.2/(a~t,

it is seen that reduction of the system (2.8) to one associated with the wave equation maybe
made provided K = p~ adopts one of the forms

(a) -1.2[cty + e]4 (b) -1.2/[ -py + 15]4,

(c) (-1.2ex2Ip2)tan4{(Plct)1/2(cty + 0) (d) (-1.2ex2IP2)coth4{( -Plcti/2(exy + IJ)}·

4. INTEGRATION OF THE BASIC EQUATIONS

The matrix transformations (3.16) now yield

(e:) = (a f
v y' 0 a~)(:) y + (~ b~) (:) ,

( e') (a~ 0) (e) (0 b~) (e)
v' t' = 0 a~ v t + bf 0 v'

y' = y, t' = t

(4.1)

(4.2)

(4.3)

where a~ adopts one of the forms (a-d) of the preceding section, a~ = -1.la~ and bL b~ are
constants. The cases (a-d) are now investigated in turn.

(a)
The system (4.1) gives

e; = [-1./(b~ y + -1.e)]ey , e; = [A/(b~ y + -1.e)]et + b~ v,

v; = [bb + Ae]vy + bL v; = (bi Y + -1.e)vt •
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The relations (4.3) provide

v' = (b~ Y + Ae)V,

so that

v = (b~y + Ae)-l[H(~) + J(i7)],

where H, J are arbitrary functions of ~, ij respectively with

665

(4.4)

~ = (y + t)/2,

Moreover, equations (4.2) show that

e~ = -HH'(~) - J'(ij)],

whence

ij = (y - t)/2.

e; = 'HH'(~) + J'(ij)],

(4.5), (4.6)

(4.8)

(4.9)

e' = H(~) - J(ij),

so that, employing (4.2),

ey = t(b~y + Ae)rl[H'(~) - J'(ij)],

et = t(b~y + ..le)r 1[H'(~) + J'(i7)] - b~ A-1 [H(~) + J(ij)].

Integration of the latter pair of relations gives

e = b~r1[{~ + ij + ..le/bmH(~) - J(fi)] - 2{f H(~) d~ - fJ(ij) dijJ]. (4.7)

Thus, when the product p~ takes the form

p~ = ..l2[ay + e]4, (a = bp-1),

the system (2.8) may be integrated to provide the expressions (4.7) and (4.4) for e and v
respectively.

(b)
In this case, from (4.1),

e~ = (biy + <5)ey + bie, e; = (biy + <5)et ,

v~ = [A/(biY + <5)]vy , v; = [A/(b}y + b)]Vt + b}e.

Integration of the relations (4.8) yields

e' = (b}y + b)e,

whence

e = (bly + b)-1[F(~) + G(i7)], (4.10)

where F, G are arbitrary functions of their indicated arguments. Further, from (4.9),

v~ = [..l/(b}y + b)]Vy = [bh + <5]et = t[F'(~) - G'(ij)],

v; = [..l/(b}y + b)]Vt + ble = [bly + b]ey + ble = t[F'(~) + G'Cii)],

so that

v' = F(~) - GCii),
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vy = t(b~y + J)r 1 [F'(c;) - G'(tY)], (4.11)

vt = -Hb~y + J)}.-I[F'W + G'(t/)] - b~rl[F(~) + G(m]. (4.12)

In terms of the variables ~, tY, equations (4.11) and (4.12) may be written in the form

v~ = [b~(~ + m+ J]}. -1 F'(~) - b~A. -1 [F(~) + G(i/)],

vij = -[bj(~ + tY) + J]r 1G'(tY) + blrl[F(~) + G(t/)],

whence, on integration,

v = bjrl[{~ + ij + J/bmF(~) - G(m] - 2{f F(~) d~ - fG(if) dijl]. (4.13)

Consequently, it is seen that, when p~ adopts the form

([3 = -bD,

the system (2.8) integrates the expressions for e and v being given by (4.10) and (4.13) res
pectively.

(c)
If L(~) and M(ij) are arbitrary functions of their respective arguments,

e' = L(~) + M(ij), v' = L(~) - M(if}

and the relations (4. I) provide, in this case

e~ = HL'(~) + M'(ij)] = ajey + bje = a~ vt + ble.

e; = HL'(~) - M'(ij)] = a~ vy + b~ v = ajet + b~ v,

whence,

o [e cos{([3/a)I/2(rxy + m] = t(rx/[3)1/2[L'(c;) + M'(ij)] sin{([3/rx)I/2(rxy + m, (4.14)oy
and

~ [v sin{([3/!Y.)1/2(rxy + ~)}] = t([3/rx)1/2r 1[L'(~) - M '(if)] coS{(ft/rx)I/2(rxy + m· (4.15)oy
On integration, (4.14) and (4.15) yield

e = (a/[3)1/2[(L(~) + M(ij)) tan{([3/rx)I/2(ay + m-
- (rxf3)1/2 sec{(f3/rx)I/2(ay + mf(L(~) + M(ij)) cos{(f3/rx)I/2(ay + mdy] +

+ T1(t) sec{(f3/!Y.)1/2(ay + ()}, (4.16)

v = (f3/a)I/2r 1 [(L(~) - M(ij)) cot{([3/rx)I/2(rxy + m+

+ (rx[3)1/2 cosec{(ft/rx)I/2(rxy + mf(L(~) - M(ij)) sin{(ft/rx)1/2(ay + mdy]

+ T2(t) cosec{(f3/t:t.)1/2(rxy + m, (4.17)
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where T1 , T2 are functions of t. Moreover, the relations
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show that

whence, since af3 > 0 in this case,

T1(t) = A cos[(af3)1/2t] + B sin[(af3)1/2t],

Tit) = A-l(f3/a){A sin[(af3)1/2t] - B cos[(af3)1/2 t]},

where A, B are arbitrary constants of integration.
(d)

Setting

'<,' = P(~) + Q(i1), v' = pm - Q(ij),

by virtue of the relations (4.1),

(4.18)

(4.19)

.!..... [e sinh{( - f3/a)1/2(ay + 'l')}] = -H - a/f3)1/2[P'(~) + Q'(ij)] cosh{( - f3/a)1/2(ay + 'l')}.oy

:y [v cosh{( - f3/a)1/2(ay + 'l')}] = -!-r l(_a/f3)1/2[P'(~) - Q'(ij)] sinh{( - f3/a)1/2(ay + 'l')}.

On integration, it is seen that

e = (-a/f3)1/2[(p(~) + Q(ij)) coth{( - f3/a)1/2(ay + 'l')}-

- (-af3)1/2 cosech{( - p/a)1/2(a.y + 'l')}f(P(~) + Q(ij)) sinh{( - p/a)1/2(a.y + 'l')} dy] +

+ Tlt) cosech{( _p/a)1/2(ay + 'l')}, (4.20)

v = (-a/f3)1 /2r 1[(P(~) - Q(ij)) tanh{( - f3/a)1/2(ay + 'l')} -

- ( - af3)1/2 sech{( - p/a)1/2(ay + 'l')}J(P(~) - Q(ij)) cosh{( - p/a)1/2(ay + 'l')} dy] +

+ Tit) sech{( - p/a)1/2(ay + 'l')}. (4.21)

The relations

further show that

T3 = C cosh[( _a.p)1/2 t] + D sinh[( _ap)1/2t], (4.22)

T4 = -r1(P/a){C sinh[( _ap)1/2t] + D cosh[( _ap)1/2 t]}, (4.23)

where C, D are constants of integration.



668 D. L. CLEMENTS and C. ROGERS

5. WAVE PROPAGATION IN A SEMI-INFINITE ROD

The application of the preceding work to a specific problem involving wave propagation
in an inhomogeneous semi-infinite rod is now considered. The semi-infinite rod x> X o is
subjected to the displacement

u = H(t) at x = X o' (5.1)

where H(t) is the step function. We suppose the density p and Young's modulus e= E adopt
the respective forms

E = Eo{l + x)m,

P = Po{l + x)m

where m = ±2 and Eo and Po are constants. Then, using (2.4),

We consider the case m = 2 and m = -2 separately.
When m = 2 it is seen that pE adopts the form associated with case (a), where

(5.2)

(5.3)

(5.4)

e = I + xo , (5.5)

Now in this case e and v are given by (4.7) and (4.4) respectively and these equations may
be readily integrated to give the displacement in the form

where

(5.6)

V'(~) = 2H(~), W'(i/) = - 2J(i/). (5.7)

Recalling that ~ = (y + t)/2 and i/ = (y - t)/2, it follows that an appropriate choice of
V(~) and W(i/) is

V(~) = 0, W(i/) = Af;H( - 2i/). (5.8)

Thus, substitution into (5.6) shows that, on employing (5.4) and (5.5),

1 + X ou =--H(r),
l+x

where

(5.9)

(5.10)
(

p )1/2
r = - 2i/ = t - E: (x - xo)·

Thus, when the material parameters E and p increase with x according to (5.2) and (5.3) (with
m = 2), it is apparent that the pulse propagates with constant speed. Also, the amplitude of
the displacement given by (5.9) tends to zero as x --> 00.

When m = -2pE adopts the form associated with case (b), where

b = I + x o , (5.1l)
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(5.12)

Integrating (4.10) and (4.13) we obtain an expression for the displacement which can be
written in the form

u = r l{[b~(~ + if) + <5](M(~) + N(il» - 2b~fM(~) d~ - 2b~fN(ij) dil} ,

where

N'(ij) = 2G(ij). (5.13)

For the problem considered in this section the appropriate choice M(~) and N(ij) is

M(~) =0, N(iD =;'<5- 1 exp(2Nil/S)H(-2iJ). (5.14)

Hence, substituting (5.14) in (5.12) and using (5.11), we obtain

U = {I + x - Xo exp[ -T(EO/PO)1/2l}H(T). (5.15)
I +XO

Thus, when the material parameters E and P decrease with x according to (5.2) and (5.3)
(with m = -2), the pulse propagates with constant speed. Also the amplitude of the dis
placement at x Xl > X o decreases from (1 + x1)/(1 + xo) at t = (pO/EO)1/2(Xl x o) to
unity as t ~ 00.

Finally, it should be noted that the assumption that the rod is semi-infinite leads to the
solutions having some features which are unsatisfactory from a physical viewpoint. However
the solutions can certainly be regarded as giving a satisfactory description of the first stages
in the propagation of waves along a finite rod.
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PeJlOMe - PaccMaTplfBalOT pacnpocTpaHeHHe BOJIHJ>I B ReO,I:\HOpon:HOM ::lJIacTH'lHOM CTeplKHe
HJIH nJIOCKOIl nJIaCTHHe. Onpe,I:\eJIlilOTIIHe ypaBHeHHJI 3anHChIBalOT B BH,I:\e Ta6JIHQhI H HruyT
npeo6pa30BaHHSI, KOTophIe npHBe,I:\yT CHcTeMy K <!>opMe CB1I3aHHOil c ypaBHeHHeM BOJIHhI.
I1Il:TerpHpOBaHHe CHCTeMPl TOr,I:\a rrpOHCXO,I:\HT HeMeMeHHoe. BhIlICHeHO, 'ITO TaKOe npeo6pa
30BaHHe B03MOlKHO npH ycnOBHH, 'ITO <!>YHKQHSI, BKJIIO'IalOTIIaSi napaMeTphI nJIOTHOCTH If
::lJIaCTH'IHOCTH MaTepHaJIa npHMeT onpe,I:\eJIeHHhle MHorOnapaMeTpH'IeCKHe <!>0PMhI. ~TH

napaMeTphI nO,I:\XO,I:\lIT no OTHOllIeHHIO K nOBe,I:\eHIfIO pa3HhlX HeOAHopOAHhIX 3JIaCTH'IHhIX
MaTepHaJIOB. IlpH nOMOTIIH HaCTOSImero MeTO,I:\a pemaeTCli Bonpoc cneUH<!>H'IeCKOrO HCXO,I:\
Horo rpaHH'IHOrO '3Ha'leHHlI.
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